
tGLAD: A sparse graph recovery based approach for
multivariate time series segmentation

Shima Imani & Harsh Shrivastava

Microsoft Research, Redmond, USA
{shimaimani,hshrivastava}@microsoft.com

Abstract. Segmentation of multivariate time series data is a valuable
technique for identifying meaningful patterns or changes in the time series
that can signal a shift in the system’s behavior. We introduce a domain
agnostic framework ‘tGLAD’ for multivariate time series segmentation
using conditional independence (CI) graphs that capture the partial
correlations. It draws a parallel between the CI graph nodes and the
variables of the time series. Consider applying a graph recovery model
uGLAD to a short interval of the time series, it will result in a CI graph
that shows partial correlations among the variables. We extend this idea
to the entire time series by utilizing a sliding window to create a batch of
time intervals and then run a single uGLAD model in multitask learning
mode to recover all the CI graphs simultaneously. As a result, we obtain a
corresponding temporal CI graphs representation of the multivariate time
series. We then designed a first-order and second-order based trajectory
tracking algorithm to study the evolution of these graphs across distinct
intervals. Finally, an ‘Allocation’ algorithm is designed to determine a
suitable segmentation of the temporal graph sequence which corresponds
to the original multivariate time series. tGLAD provides a competitive time
complexity of O(N) for settings where number of variables D << N . We
demonstrate successful empirical results on a Physical Activity Monitoring
data.1

Keywords: Multivariate time series segmentation, Conditional Indepen-
dence Graphs, Sparse Graph recovery

1 Introduction

Time series segmentation is the process of dividing a time series into multiple
segments, or sub-series, based on certain characteristics or patterns. Segmentation
has many benefits, such as reducing a long time series into manageable sections to
facilitate labeling by a human or machine annotator, and uncovering unexpected
actionable patterns in data through exploration. For example, it can be used in
finance to identify trends and patterns in stock prices, in marketing to analyze
consumer behavior, and in healthcare to monitor patient vital signs. This helps
to understand the underlying dynamics of the data and even make predictions
about future events [2,21,37].
1 Software: https://github.com/Harshs27/tGLAD

https://github.com/Harshs27/tGLAD


2 Shima Imani & Harsh Shrivastava

There are numerous algorithms available for segmenting time series with
majority of them primarily designed to handle the univariate case. If N is the
length of the time series, most algorithms have an expected time complexity of
O(N2), however, some more recent algorithms have achieved an O(N logN) time
complexity with certain limiting approximations. Some time series segmentation
methods are designed for specific domains, limiting their broader application.
Additionally, some methods make assumptions about the semantic segments
being well-defined, but they may not always align with real-world data and
thereby hinder their effectiveness. The extensions suggested for these methods to
handle multivariate data are non-trivial and often do not perform well in practice.
Related works section covers them in detail.

Consider a small slice of a multivariate time series consisting of D variables, say
from T1 to T10 which contains no crucial segmentation points. For this slice, we can
expect the correlation between the D variables to be roughly the same throughout
corrD(T1) ∼ corrD(T10). Now, let’s assume that there is a segmentation point
at T11. For instance, if we are monitoring the sensor data of an athlete, we can
consider that at time T11, the athlete switched activity from jogging to sprinting.
We now expect that the correlations among the variables will change at the
segmentation points, corrD(T10) ̸∼ corrD(T11). Our proposed framework, called
tGLAD, is designed to efficiently detect this change of correlations which indicate
segmentation points.

To realize this intuition, we identified a novel cross-domain application of
sparse graph recovery for time series analysis. Briefly, given input variables and
their samples, sparse graph recovery methods output a graph whose edges capture
the direct dependencies among the variables. In our work, we focus on recovering
special type of graphs, called the conditional independence (CI) graphs [28].
The CI graphs capture the partial correlations between the variables, which can
be either positive or negative. Among the many different algorithms to recover
CI graphs, we choose a recently developed state-of-the-art deep model called
uGLAD [31,32]. Its multitask learning ability enables a single instance of the model
to run on batch input and recover multiple graphs simultaneously, a property
that paves way for the high efficiency of tGLAD. Although, one can theoretically
utilize any algorithm under the larger umbrella of the sparse graph recovery
methods, the methods section will highlight the key reasons which justifies our
choice of using the combination of CI graphs and uGLAD.

The process followed by the tGLAD framework for doing multivariate time
series segmentation is as follows. We divide the time series into sub-sequences or
batches and then run a CI graph recovery model uGLAD that gives a corresponding
temporal graphs. The nodes of CI graphs are the variables of the multivariate
time series and the edges capture the partial correlation strength between the
variables. In essence, we have distilled down some relevant information of the
time series in the temporal CI graphs. As per our intuition, the instances where
the consecutive CI graphs differ a lot in their correlations, those points of the
temporal graphs will correspond to the segmentation points in the time series. We
use this insight to develop our multi-step framework tGLAD. Thus, we developed



tGLAD framework for multivariate time series segmentation 3

efficient algorithms to capture the dynamics or the evolution pattern of the
temporal CI graphs which in turn help us identify the segmentation regions in
the original time series.

Listing the key contributions of our work. Please note that we use the terms,
time series and sequences, interchangeably throughout.
1. A novel cross-domain approach for multivariate time series segmentation based

on using sparse graph recovery algorithms.
2. Efficient method to give linear O(N) time complexity in terms sequence length

for cases where the number of variables follow D3 << N
3. Provide explainability and transparency by giving insights into reasons for the

segmentation.
4. A domain agnostic framework that can be applied for time series from various

domains.

2 Related works

Our framework is a combination of the literature from time series segmentation
and sparse graph recovery. So, we discuss relevant research from both of them to
provide background knowledge.

Segmentation Methods. There are several time series segmentation meth-
ods available that use different approaches to segment a time series into different
classes based on changes in its temporal shape patterns. We divide the existing
methods into domain specific and domain agnostic ones.

Domain specific. If one narrows down the scope for analysing time series to
a specific field, specialized methods can be developed by utilizing the domain-
specific insights. Survey in [17] did a collective analysis of various such methods
and also highlighted one key insight that for almost all the methods some
background on the nature of the domain and motion is needed. Although, the
recent observed trend is to develop domain agnostic approaches and we can find
interesting techniques in this category. For example, Automobile trajectories were
studied in [10], electroencephalography data was analysed in [15], electrical power
consumption analysis in [23], music sequence analysis in [26], biological time
series in [21], human motion segmentation was investigated in [2,3,16] among
others.

Domain agnostic. In attempt to design domain agnostic techniques for wider
adaptability, FLOSS (Fast Low-cost Online Semantic Segmentation) [8] was
developed. It is a popular method which produces an Arc Curve (AC) that
annotates the original time series with information about the likelihood of a
regime change at each point in the series. The AC is used to identify segments
with similar temporal shape patterns that are likely to belong to the same class
and occur within close temporal proximity to each other. Another method called
ESPRESSO (Entropy and ShaPe awaRe timE-Series SegmentatiOn) [5], is a
hybrid approach that uses both shape pattern and statistical distribution of
time series to segment time series data. ESPRESSO uses a modified version
of FLOSS by incorporating the Weighted Chained Arc Curve to capture the



4 Shima Imani & Harsh Shrivastava

density of pattern repetition with time. Recently proposed ClaSP (Classification
Score Profile) is a self-supervised time series segmentation method that uses
overlapping windows to split time series into hypothetical partitions. For each
partition, a binary classifier is trained and evaluated using cross-validation. The
degree of self-similarity is recorded for each offset and then the classification
score profile is computed, which is ultimately used for segmenting time series
data [6]. Other relevant methods include [4,12,18,19].

Fig. 1: Overview of Sparse Graph Recovery methods. We focus on methods that
recover undirected graphs which capture direct dependence among their nodes
or features. tGLAD framework utilizes a recently developed deep model, uGLAD,
that outputs a conditional independence graph between in the features. Our
framework can potentially use other methods and will be interesting topic for
future explorations. (partly borrowed from [30])

Sparse graph recovery. Given data with D features and M samples as
input, the aim of the sparse graph recovery methods is to obtain a probabilistic
graphical model [14] that potentially shows sparse connections between the D
features. We focus on methods that recover undirected graphical models, refer
Fig. 1. Sparse graph recovery methods have been used for various applications
like gene regulatory network discovery [1,11,20,34,35,36], understanding Digester
functioning to increase Methane yield [32], extracting insights from an Infant
mortality data [29,30], studying autism by analysing brain sensory signals [22]
among many others.

Conditional Independence graphs. The edges of a CI graph show the partial
correlation between the nodes or features. The partial correlation can be consid-
ered as capturing direct dependency between the features as it is the conditional
probability of the features under consideration given all the other features. Refer
inner block in orange of Fig. 1. Popular formulations of recovering CI graph
include optimizing the graphical lasso objective [7,25] which include deep models
like [27,31,32,33] or dynamic programming based approach to directly evaluate
the expression of partial correlations. Survey [28] formalizes the definition of



tGLAD framework for multivariate time series segmentation 5

CI graphs, categorizes various methods that recover such graphs, describe and
compares their performance, provide their implementation details and discuss
their applications. It is a good entry point to understanding the umbrella of
methods that recover CI graphs. The method by [9] they utilized temporal graphs
to understand dynamics of systems which is similar idea as ours but was not
developed for time series segmentation settings.

3 Methods

We introduce the necessary definitions and notations to facilitate our discussions
followed by the steps followed by the tGLAD framework.

3.1 Definitions

A multivariate time series T of length N and dimension D is a sequence of
real-valued vectors

T = t1, t2, . . . , tN , where ti ∈ RD

A Subsequence is defined as a local section of a time series that consists
of a continuous subset of its values. A subsequence Ti,M of a time series T is
a continuous subset of the values from T of length M starting from position i.
Formally, Ti,M = ti, ti+1, . . . , ti+M−1, where 1 ≤ i ≤ N −M + 1.

In order to extract continuous subsequences from time series, we utizlize the
stride length shifting to determine the next subsequence. In time series data, the
stride length is the number of data points by which we shift the starting position
of the current subsequence to extract the position of the next subsequence. For
example, a stride length s means that if the current subsequence is located at
Ti,M where i where is the starting position of the subsequence from T with length
M , then the next subsequence is Ti+s,M with the starting position at i+ s.

3.2 tGLAD framework

Figure 2 enumerates the steps followed by tGLAD to do multivariate time-series
segmentation. The details for each of these steps are given below.

(A) Identifying variables and prepare batch input for sparse graph
recovery

For all the variables in the given multivariate time series, basic preprocessing
is done which includes missing value imputation using a forward filling algorithm.
The data is now partitioned into small chunks using a fixed window size M and
stride length s and runs over the entire time series. The window size determined
based on the approach suggested in [13]. We now end up with B = (N−M+1)/s
batches, with each having M samples for D variables. The input to the graph
recovery algorithm will be the batch of samples, represented as a tensor of size



6 Shima Imani & Harsh Shrivastava

uGLAD
(Multitask Learning)

Temporal Conditional Independence
Graphs

Input multivariate time series Output segmentations (acc 84.1%)

Second order distance (absolute)

First order distance

Batches

B

A

C2

D

C1

Fig. 2: tGLAD framework. (A) The time series is divided into multiple intervals
by using a sliding window to create a batch of intervals. (B) Run a single
uGLAD model in multitask learning (or batch) mode setting to recover a CI graph
for every input batch. This gives a corresponding set of temporal CI graphs. The
entire input is processed in a single step as opposed to obtaining a CI graph
for each interval individually. (C1) Get the first order distance, dG sequence, of
the temporal CI graphs which captures the distance between the consecutive
graphs. This is supposed to give higher values at the segmentation points. (C2)
Again take a first order distance of the sequence in the previous step and then
its absolute value to get d2G sequence, which further accentuates the values at
the segmentation points. (D) Apply a threshold to zero out the smaller values of
d2G and identify the segmentation blocks using an ‘Allocation’ algorithm.



tGLAD framework for multivariate time series segmentation 7

X ∈ RB×M×D.

(B) Obtaining the temporal Conditional Independence graphs

Algorithm 1: Allocating segments
Function get-segments(d2G, Z=5):

B ← len(d2G)
labels← [1]×B
/* Removing noise */
d2G < 0.5 = 0
/* The window size is M */
For i← 0 to B do

If d2G[i] > 0 then
start = max(0, i−M · Z)
end = min(B− 1, i+M ·Z)
labels[start : end]← 0

return labels

The aim of the sparse graph
recovery algorithm is to run
on the input from step (A),
denoted by X and output
corresponding set of graphs,
whose adjacency matrix is rep-
resented here by the tensor
P ∈ RB×D×D. There are 2
key requirements from any such
method, namely (1) The re-
sultant graph should capture
direct dependencies between
the features (2) The method
should be efficient. We chose a
combination of CI graphs and
uGLAD model keeping in mind the desiderata desired.

Why CI graphs? CI graphs capture partial correlations between the features
which model direct dependencies between them. The nodes are the features
and the edge weights carry the partial correlation value that lies in the range
[−1, 1]. This additionally provides us with the positive or negative correlation
information, which later help us in determining the relevant features that result
in a segmentation prediction as well as provide explainability and transparency
to our framework.

Why uGLAD ? Introduced in [31], uGLAD is a deep-unfolding (or unrolled algo-
rithm) based model which is an unsupervised extension of the GLAD [33] model.
These models are based on the optimization of the graphical lasso objective
which assumes that the observed data comes from an underlying multivariate
Gaussian distribution. Owing to the deep-unfolding done based on the Ater-
nating Minimization updates and then expressiveness provided by the neural
network based parameterization, these models are shown to better capture the
tail-distribution points and also improve sample complexity results. Apart from
the theoretical advantages and performance improvements over the other CI
graph recovery methods, uGLAD is efficient as well. The tensor based implemen-
tation of uGLAD allows it to do multitask learning. This enables a single model
to recover the entire batch of data simultaneously. We want to point out that
we consider the sample data within a window size follow i.i.d. setting for the
multivariate Gaussian assumption to work.

We run uGLAD in ‘batch mode’ to obtain all the underlying precision matrices
at once, θ ←uGLAD(X), where θ ∈ RB×M×D. The calculation of the partial
correlation matrix P is straightforward from Θ, refer [28]. The parameter sharing
across these different tasks helps maintain robustness against noisy data and
facilitates transfer learning. We thus obtain a series of temporal CI graphs,



8 Shima Imani & Harsh Shrivastava

represented by the adjacency matrices G = [G1, G2, · · · , GB] ∈ RB×D×D using
P. Each entry of the adjacency matrix is equal to the partial correlation value,
Gb[p, q] = ρ(Dp, Dq) for the bth batch and Dk represent the kth time series
variable. The temporal graphs can be seen as distilling some relevant information
from the original multivariate time series data in form of graphs.

(C) Towards segmentation of the corresponding temporal CI graphs
Our formulation is based on the assumption that the key signals needed to

successfully segment the original time series are captured in the corresponding
temporal graphs and that the correlation among the features are informative
enough for the task. So, if we are able to segment the temporal graphs, we can
map the segmentation to the original time series.

(C1) We compute the first-order distance sequence dG ∈ RB by finding the
distance of the consecutive graphs in the temporal graph series G. For each entry
b ∈ B of dG, we measure the distance between its recovered graph and the next
neighbor as

dG[b] = distance(Gb, Gb+1) =
∑
p,q

(Gb[p, q]−Gb+1[p, q]) ∀p, q ∈ {1, · · · , D}

where weights are the partial correlation values of the edges of the CI graphs
under consideration.

(C2) Given the sequence dG, next we compute the second-order distance
sequence d2G by applying the following distance operation

d2G[b] = abs (dG[b]− dG[b− 1]) , ∀b ∈ (1, B)

The first-order distance measures the change between each recovered graph and
its next neighbor, while the second-order distance highlights potential segmenta-
tion points. While there are other distance metrics that can potentially be used,
in our experiments, we found that the first-order and second-order distances
described above worked well for detecting segmentation points. The output of
this trajectory tracking step is the d2G sequence.

D. Allocation algorithm for obtaining the final segmentation
We develop an ‘Allocation’ algorithm to obtain the final segmentation points

from the d2G sequence. We first filter out small noises in d2G by applying a
conservative threshold. We then traverse the sequence d2G sequentially and mark
the start of a segmentation a new block if we observe a non-zero value. We also
disregard any changes in behavior or segmentation points that occur in less than
Z times the window size (M), otherwise the segmentation size will be significantly
smaller than the window size and we will not be able to catch it. We usually
choose Z ∼ 5 in our experiments. The allocation process (Alg. 1) reads the d2G
sequence and predict the tGLAD segmentation scores.



tGLAD framework for multivariate time series segmentation 9

3.3 Time complexity analysis of tGLAD

We analyse the time complexity of each of the steps followed by the tGLAD frame-
work below.

– (A) Creation of batches will require a single full scan of the time series, so
complexity is O(N).

– (B) the time complexity of this step will consist of the input covariance matrix
creation O(N ·D2), and then running uGLAD in batch mode. For a single input,
uGLAD runs in O(D3 · E), so for B batches the sequential runtime will be
O(B ·D3 ·E). Since, we can process batches in parallel with uGLAD batch mode,
in practice we observe significantly less runtime. The worst case scenario will
be when B → N , giving time complexity as O(N ·D3 · E).

– (C1) The first order distance function goes through the entire length of the
temporal graph sequence and each time enumerate all possible edges between
graphs having D nodes. So, it has a time complexity of O(N ·D2) ∼ O(N).

– (C2) Creation of d2G will require a single full scan of the dG, so complexity is
O(N).

– (Allocation algorithm) Scans the d2G array once, so complexity is O(N).

The overall time complexity of the tGLAD framework in cases where the number
of variables are not high, D3 << N , is O(N)+O(N ·D3 ·E)+O(N ·D2) ∼ O(N).
The worst case time complexity, where the number of variables are so large that
we cannot leverage the power of the multitask learning in batch mode of uGLAD,
is O(N) +O(N ·D3 · E) +O(N ·D2) ∼ O(N ·D3).

4 Experiments

We evaluate the tGLAD framework on a real world body sensor dataset. Since, it is
a novel framework, we conduct several design choices experiments to understand
their impact on tGLAD’s performance.

4.1 PAMAP2 Dataset

To get a realistic sense about the effectiveness of our approach, we conducted
experiments on the PAMAP2 Physical Activity Monitoring dataset [24]. This
dataset captures sensor data from multiple participants engaging in a variety
of physical activities, making it a valuable resource for activity recognition and
algorithm development. Our analysis was primarily based on multi-dimensional
time series with the following three signals: the hand acceleration signal in the
x-axis and z-axis, and the ankle gyroscope signal in the x-axis, which allowed us
to examine the movements and rotations of the hand and ankle during physical
activity.

Fig. 2 (A & D) shows a three-hour segment of this data collected from
one of the participants, highlighting their physical activities such as ironing
(44 minutes), vacuum cleaning (42 minutes), and stair activity (ascending 15



10 Shima Imani & Harsh Shrivastava

minutes, descending 10 minutes), as well as periods of inactivity (transient).
Fig. 2 additionally shows all the steps of the tGLAD framework followed in order
to segment the data.

4.2 Results

We chose accuracy as the metric to evaluate the segmentation performance. The
accuracy is measured as the penalty for mislabeling the segmentation. For the
ground truth time series, we put label=1 whenever an activity occurs and at
every segmentation point where there is no activity, we switch the label=0. For
the prediction labels, we consider the d2G sequence obtained from Fig. 2(D) and
use the Allocation technique describe in Alg. 1, with parameter Z = 5.

Fig. 3: Design choices for tGLAD. Examining the segmentation accuracy on the
PAMAP2 dataset which records body sensor data. We vary the window size on
the x-axis and for each window size, we evaluate the performance for varying
batch sizes (M). The stride length was fixed at 100 for all the experiments.

We achieved an accuracy of 84.1% for the PAMAP2 dataset using a window
size of 1000 , batch size of 64 and stride length of 100, indicating that the
tGLAD framework is effective for physical activity monitoring based time series.
The window size is the chunk of the time series considered at a time for processing
CI graphs, so it is an important parameter to be chosen while running our
framework. The batch size is the number of graphs that are recovered by a
single uGLAD model. As we are using multitasking, the parameters of the model
are shared among the graphs within a batch, hence this is also an important
parameter that can affect tGLAD’s performance. Small batch size will lead to



tGLAD framework for multivariate time series segmentation 11

increased runtime as more number of batches to process, less robust to noise
but more accurate graph recovery, while on the other hand, higher batch size
will be efficient in term of runtime and robustness to anomalies, but since it
has to recover graphs that are potentially sampled from different underlying
distributions, the accuracy might take a hit. So, it is imperative that we do
a study on effect of these design choices. Thus, in order to gain insights into
the performance of tGLAD with respect to the batch size and window size, we
explored the impact on the segmentation accuracy by doing a grid plot over a
range of size choices, as illustrated in Fig. 3.

Analysing the results indicate that changes in batch size and window sizes
do not significantly affect the accuracy of the segmentation. If we consider any
fixed window size, we do not see much variance in the performance over different
batch sizes, that suggests a good graph recovery performance of the uGLAD model.
Thus, we can potentially increase the batch size for faster runtimes, without
compromising much on the accuracy. Lots of research has been done on the choice
of window size, with some methods being more sensitive than others. We do see
variance in the performance of tGLAD with change in window size, still the results
suggest that a reasonable window size can be chosen to achieve a satisfactory
segmentation label. The choice of the window size also depends considerably on
the type of data as well.

5 Conclusions

We introduce a domain agnostic multivariate time series framework called tGLAD.
It is a novel cross-domain approach that maps the original time series to a
corresponding temporal graph representation which makes the problem of finding
segmentation easier and efficient. The choice of a recently developed deep model
uGLAD for recovering conditional independence graphs gives the much needed
efficiency to our framework. We identified a unique use of the multitask learning
ability of uGLAD model which also makes the case of batch learning in sparse graph
recovery models more lucrative. Additionally, from the plethora of graph choices
available, this work also narrowed down the type to conditional independence
graphs. The CI graphs capture the intuition that correlation among the multi-
variate timeseries variables will change significantly at the segmentation points.
We demonstrate successful segmentation results on the challenging PAMAP2
dataset, with achieving an accuracy of 84.10% along with performing a parameter
exploration study.

5.1 Future Work

We have plans to pursue two directions of research for expanding tGLAD. Firstly,
we will investigate the potential for segmenting univariate time series data using
the tGLAD framework. our approach consists of ‘smartly’ converting the 1D
sequence to multidimensional time series and then use the tGLAD framework. This
approach seems promising due to its high efficiency in terms of time complexity



12 Shima Imani & Harsh Shrivastava

and hopefully good segmentation accuracy. Secondly, we aim to extend the
tGLAD framework to work in real-time or online settings. This will require adapting
the framework and evaluating the trade-offs between computational efficiency
and segmentation accuracy. The results of this research could have significant
implications for fields such as finance, healthcare, and industrial monitoring.

5.2 Ethical Concerns

Our method does not introduce new ethical issues, but ethical considerations
would be important if it were to be applied to sensitive data.

References

1. Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: Engrain:
a supervised ensemble learning method for recovery of large-scale gene regulatory
networks. Bioinformatics (2021)

2. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point
detection. Knowledge and information systems 51(2), 339–367 (2017)

3. Aoki, T., Lin, J.F.S., Kulić, D., Venture, G.: Segmentation of human upper body
movement using multiple imu sensors. In: 2016 38th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 3163–3166.
IEEE (2016)

4. Castellini, A., Bicego, M., Masillo, F., Zuccotto, M., Farinelli, A.: Time series
segmentation for state-model generation of autonomous aquatic drones: A systematic
framework. Eng. Appl. Artif. Intell. 90, 103499 (2020)

5. Deldari, S., Smith, D.V., Sadri, A., Salim, F.D.: Espresso: Entropy and shape aware
time-series segmentation for processing heterogeneous sensor data. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 4, 77:1–77:24 (2020)

6. Ermshaus, A., Schäfer, P., Leser, U.: Clasp–parameter-free time series segmentation.
arXiv preprint arXiv:2207.13987 (2022)

7. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with
the graphical lasso. Biostatistics 9(3), 432–441 (2008)

8. Gharghabi, S., Yeh, C.C.M., Ding, Y., Ding, W., Hibbing, P., LaMunion, S., Kaplan,
A., Crouter, S.E., Keogh, E.: Domain agnostic online semantic segmentation for
multi-dimensional time series. Data mining and knowledge discovery 33(1), 96–130
(2019)

9. Hallac, D., Park, Y., Boyd, S., Leskovec, J.: Network inference via the time-varying
graphical lasso. In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 205–213 (2017)

10. Harguess, J., Aggarwal, J.: Semantic labeling of track events using time series
segmentation and shape analysis. In: 2009 16th IEEE International Conference on
Image Processing (ICIP). pp. 4317–4320. IEEE (2009)

11. Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference
of gene regulation using stability selection. BMC systems biology 6(1) (2012)

12. Imani, S., Abdoli, A., Keogh, E.: Time2cluster: Clustering time series using neighbor
information

13. Imani, S., Keogh, E.: Multi-window-finder: Domain agnostic window size for time
series data (2021)



tGLAD framework for multivariate time series segmentation 13

14. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

15. Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., Freedson, P.S.:
Validation of wearable monitors for assessing sedentary behavior. Medicine &
Science in Sports & Exercise 43(8), 1561–1567 (2011)

16. Lan, R., Sun, H.: Automated human motion segmentation via motion regularities.
The Visual Computer 31, 35–53 (2015)

17. Lin, J.F.S., Karg, M., Kulić, D.: Movement primitive segmentation for human
motion modeling: A framework for analysis. IEEE Transactions on Human-Machine
Systems 46(3), 325–339 (2016)

18. Lu, S., Huang, S.: Segmentation of multivariate industrial time series data based
on dynamic latent variable predictability. IEEE Access 8, 112092–112103 (2020)

19. Machné, R., Murray, D.B., Stadler, P.F.: Similarity-based segmentation of multi-
dimensional signals. Scientific Reports 7 (2017)

20. Moerman, T., Aibar Santos, S., Bravo González-Blas, C., Simm, J., Moreau, Y.,
Aerts, J., Aerts, S.: Grnboost2 and arboreto: efficient and scalable inference of gene
regulatory networks. Bioinformatics 35(12), 2159–2161 (2019)

21. Omranian, N., Mueller-Roeber, B., Nikoloski, Z.: Segmentation of biological multi-
variate time-series data. Scientific reports 5(1), 1–6 (2015)

22. Pu, X., Cao, T., Zhang, X., Dong, X., Chen, S.: Learning to learn graph topologies.
Advances in Neural Information Processing Systems 34 (2021)

23. Reinhardt, A., Christin, D., Kanhere, S.S.: Predicting the power consumption of
electric appliances through time series pattern matching. In: Proceedings of the
5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings. pp. 1–2
(2013)

24. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity moni-
toring. In: 2012 16th international symposium on wearable computers. pp. 108–109.
IEEE (2012)

25. Rolfs, B., Rajaratnam, B., Guillot, D., Wong, I., Maleki, A.: Iterative thresholding
algorithm for sparse inverse covariance estimation. Advances in Neural Information
Processing Systems 25, 1574–1582 (2012)

26. Serra, J., Müller, M., Grosche, P., Arcos, J.L.: Unsupervised music structure anno-
tation by time series structure features and segment similarity. IEEE Transactions
on Multimedia 16(5), 1229–1240 (2014)

27. Shrivastava, H.: On Using Inductive Biases for Designing Deep Learning Architec-
tures. Ph.D. thesis, Georgia Institute of Technology (2020)

28. Shrivastava, H., Chajewska, U.: Methods for recovering conditional independence
graphs: A survey. arXiv preprint arXiv:2211.06829 (2022)

29. Shrivastava, H., Chajewska, U.: Neural graphical models. arXiv preprint
arXiv:2210.00453 (2022)

30. Shrivastava, H., Chajewska, U.: Neural graph revealers. arXiv preprint
arXiv:2302.13582 (2023)

31. Shrivastava, H., Chajewska, U., Abraham, R., Chen, X.: A deep learning approach to
recover conditional independence graphs. In: NeurIPS 2022 Workshop: New Frontiers
in Graph Learning (2022), https://openreview.net/forum?id=kEwzoI3Am4c

32. Shrivastava, H., Chajewska, U., Abraham, R., Chen, X.: uGLAD: Sparse graph
recovery by optimizing deep unrolled networks. arXiv preprint arXiv:2205.11610
(2022)

33. Shrivastava, H., Chen, X., Chen, B., Lan, G., Aluru, S., Liu, H., Song, L.: GLAD:
Learning sparse graph recovery. arXiv preprint arXiv:1906.00271 (2019)

https://openreview.net/forum?id=kEwzoI3Am4c


14 Shima Imani & Harsh Shrivastava

34. Shrivastava, H., Zhang, X., Aluru, S., Song, L.: Grnular: Gene regulatory network
reconstruction using unrolled algorithm from single cell rna-sequencing data. bioRxiv
(2020)

35. Shrivastava, H., Zhang, X., Song, L., Aluru, S.: Grnular: A deep learning framework
for recovering single-cell gene regulatory networks. Journal of Computational Biology
29(1), 27–44 (2022)

36. Vân Anh Huynh-Thu, A.I., Wehenkel, L., Geurts, P.: Inferring regulatory networks
from expression data using tree-based methods. PloS one 5(9) (2010)

37. Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F.,
Mueen, A., Keogh, E.: Matrix profile i: all pairs similarity joins for time series:
a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th
international conference on data mining (ICDM). pp. 1317–1322. Ieee (2016)


	tGLAD: A sparse graph recovery based approach for multivariate time series segmentation

